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ABSTRACT 

Optimization methods are crucial methods in a process because optimization methods can solve complex 

problems. One of the most effective optimization methods to achieve optimal solutions is Particle Swarm 

Optimization (PSO), an algorithm inspired by the social behavior of animals. Where, the PSO algorithm is a 

particle (parable an animal) that has been initialized will move continuously updating its position based on a 

combination of two factors, namely the attraction towards the individual's best position (pBest) and the 

attraction towards the global best position (gBest) until it reaches the position optimal. Particle movement is 

influenced by three main control parameters, namely cognitive coefficient (c1), social coefficient (c2), and 

inertial weight (ω) in order to produce optimal values without being trapped in local solutions. The advantages 

of PSO compared to other optimal methods such as the Firefly Algorithm (FA) and Gray Wolf Optimizer 

(GWO) are its convergence speed and ability to handle non-linear problems with noise. This makes PSO good 

for applying to complex problems such as solving non-linear mathematical model problems, optimizing fuzzy 

controllers, optimizing exhaust gas emission parameters and engine performance on ships. 
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INTRODUCTION 

The need for humans to solve problems in the most 

efficient and effective way has been a matter of 

interest since ancient times. Beginning with 

classical geometry in ancient Greece, concerning 

the isoperimetric problem, which focuses on 

finding the shape with the maximum area for a 

given perimeter, this demonstrates that even in 

ancient times, humans were already considering 

ways to achieve optimal outcomes under limited 

conditions. Optimization has continued to evolve, 

from calculus optimization methods, linear and 

nonlinear optimization, to metaheuristics that can 

now solve highly complex problems where classical 

approaches are no longer efficient. 

 Optimization can be defined as a process of 

selecting the most efficient and effective solution 

from all possible options. To solve an optimization 

problem, the following steps can be taken: First, 

identifying the problem; second, formulating the 

objective function and constraints; third, selecting 

an optimization algorithm; and fourth, evaluating 

solutions until an optimal solution is reached. 

 Metaheuristics are robust and flexible 

approaches for solving complex optimization 

problems by leveraging principles derived from 
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nature [1]. Metaheuristics explore a vast search 

space and can identify optimal solutions for an 
optimization problem.  

 More than 40 years ago, the first 

recognized metaheuristic, Simulated Annealing 

(SA), was introduced. This algorithm was inspired 

by the physical annealing process in metallurgy, 

where material is heated and then slowly cooled to 

minimize defects and achieve a more stable 

structure. Since then, various other metaheuristic 

methods have emerged, such as the Grey Wolf 

Optimizer (GWO), an algorithm inspired by the 

hunting behavior of grey wolf packs. GWO mimics 

how wolves collaborate—alpha, beta, delta, and 

omega wolves—to find, encircle, and chase prey. 

The Whale Optimization Algorithm (WOA) is 

based on the hunting behavior of humpback whales 

using the bubble-net feeding technique. This 

algorithm imitates the spiral movement patterns 

humpback whales use to pursue prey underwater. 

The Harris Hawk Optimization (HHO) is inspired 

by the group hunting behavior of Harris's hawks, 

which use siege tactics to capture prey. Elephant 

Herding Optimization (EHO) draws from the social 

behavior of elephant herds, where elephants live in 

family groups led by older females, imitating the 

herd's migration patterns and task allocation. 

Particle Swarm Optimization (PSO) is based on the 

social behavior of organisms that live in groups, 

such as bird flocks or fish schools, which coordinate 

when searching for food or grouping to avoid 

predators. PSO can identify an optimal solution to a 

problem with fewer evaluations than other 
optimization methods [2]. 

 

PSO 

a. Basic Concept 

Particle Swarm Optimization (PSO) is a swarm-

based algorithm, known for its simple, nature-

inspired design, developed by Russell C. Eberhart, 

an electrical engineer, and James Kennedy, based 

on the flocking behavior of birds [3]. A single "bird" 

represents a solution within the problem space, 

where the term "bird" here refers to a "particle." 

Compared to other methods, PSO can identify 

optimal solutions with fewer evaluations and 

generally operates more efficiently and effectively 

[4]. PSO is also easy to implement for various 

problems [5]. Due to its simple model, PSO has 

attracted the attention of many researchers and has 

consequently been widely published to demonstrate 

its efficient performance across various application 

fields [3], [6]. 

 The PSO computational method aims to 

optimize a problem iteratively, beginning with a set 

or population of candidate solutions known as a 

swarm of particles. Each particle is aware of both 

the global best position within the swarm and its 

individual best position discovered thus far during 
the search process in the problem space [7]. 

At each iteration, the velocity and position of each 

particle in the swarm, represented by a d-

dimensional vector, are influenced by individual 

experiences and acquired information. This guides 

the iterative movement of particles through the 

potential solution space to search for the optimal 

solution until the desired criteria are met. 

 The velocity of particles in the swarm is 
updated at each iteration using as in (1) [8]: 

𝑉⃗ 𝑡+1
𝑖 = 𝑉⃗ 𝑡

𝑖 + 𝜑1𝑅1𝑡
𝑖(𝑝 𝑡

𝑖 − 𝑥 𝑡
𝑖)

+ 𝜑2𝑅2𝑡
𝑖(𝑔 𝑡 − 𝑥 𝑡

𝑖)            (1) 

where φ1 and φ2 are real acceleration coefficients, 

known respectively as cognitive and social weights, 

which control the extent to which the global best 

and individual best positions influence the velocity 
and trajectory of the particles. 

b. PSO Algorithm 

 As shown below, is the pseudo code for 

PSO, which initializes by randomly generating 

values for the particles. Each particle will consider 

its individual best value (pBest) and the global best 

value (gBest) based on its position. 

1. Start 

2. Initialize PSO parameters: 

a. Number of particles (n) 

b. Randomly initialize the position of each 

particle in the search space 

c. Randomly initialize the velocity of each 

particle 

d. Initialize the best individual position of 

each particle (pBest) 

e. Initialize the global best position among 

all particles (gBest) 

f. Set the maximum number of iterations 

3. Repeat until the maximum iteration is reached 

or the stopping criterion is met: 

a. For each particle: 

1) Calculate the fitness value of the 

particle at its current position 

2) If the fitness value at the current 

position is better than the pBest value, 

update pBestp with the current position 

value 

3) If the fitness value at the current 

position is better than the gBest value, 

update gBest with the current position 

value 

b. For each particle: 

1) Update the particle velocity based on 

the formula: 
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𝑣[𝑖] = 𝑣[𝑖] + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡[𝑖]
− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [𝑖]
+ 𝑐2 ∗ 𝑟2
∗ (𝑔𝐵𝑒𝑠𝑡
− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖]) 

 Where, 𝑣[𝑖] is the velocity of particle 𝑖 at 

the previous iteration, 𝑐1 and 𝑐2 are 

acceleration constants, 𝑟1 and 𝑟2 are 

random numbers between 0 and 1, 

pBest[𝑖] is the best position of particle 𝑖, 
gBest is the global best position, position 
[𝑖] is position number 𝑖. 

2) Update the position of the particle 

based on the formula: 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖] = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖] + 

𝑣[𝑖] 
c. Check if the stopping criteria have been met 

  Finish: gBest is the best solution found. 

 

To provide further clarity, here is a simple Cartesian 
diagram illustrating how PSO works. 

 

 
 

 Each initialized particle will continuously 

update its position based on a combination of two 

factors: attraction toward its individual best position 

(pBest) and attraction toward the global best 

position (gBest). The vectors shown in the diagram 

illustrate the direction of the particle's movement 

toward both pBest and gBest. Particles will 

continue to move until they reach an optimal 

position or until their movements become minimal, 

indicating convergence.  

c. Control Parameter 

 There are three main control parameters for 

PSO: the cognitive coefficient (c1), the social 

coefficient (c2), and the inertia weight (ω) [9], [10]. 

PSO is highly sensitive to these three control 

parameters, which significantly affect the 

algorithm's performance in finding solutions [2].  

1) Cognitive Coeficient (c1) 

The parameter c1 determines the extent to which 

the individual best position (pBest) influences the 

movement of the particles. This parameter reflects 

the tendency of particles to follow their own 

successful paths. Setting a value of c1 that is too 

high can cause particles to focus excessively on 

achieving pBest, thereby reducing their exploration 

capability within the solution space. Conversely, if 

c1 is set too low, particles may not be sufficiently 

guided by their own experiences and may become 

overly reliant on the global best position (gBest), 

which can limit the discovery of new solutions. 

Therefore, the value of c1 is typically set in the 

range of 1.5 to 2.0, providing an optimal balance 

between exploration and exploitation. Adjusting the 

value of c1 through experimentation can help 
identify the optimal value for specific problems. 

2) Social Coeficient (c2) 

 The parameter c2 functions to control the 

extent to which the global best position (gBest) 

influences the movement of particles, reflecting 

their tendency to follow the collective success of the 

swarm. A high value of c2 will encourage particles 

to focus more on moving toward gBest, which can 

accelerate convergence to the optimal solution. 

However, if the value of c2 is set too high, it may 

lead to a loss of diversity among the particles and 

cause them to become trapped in local solutions. 

Conversely, if c2 is set too low, particles may be 

insufficiently influenced by the swarm's 

achievements and may not move quickly enough 

toward gBest, thereby slowing down the search 

process. Therefore, c2 is typically set in the range of 

1.5 to 2.0. 

3) Inertia Weight (ω) 

 The inertia weight ω regulates the influence 

of a particle's previous velocity on its current 

velocity, functioning to balance exploration and 

exploitation. A high value of ω allows particles to 

maintain their previous speed, which can enhance 

exploration and broaden the coverage of the search 

space. Conversely, a low value of ω makes particles 

more responsive to pBest and gBest, accelerating 

the exploitation process. Typically, the value of ω 
is set in the range of 0.4 to 0.9. 

 

COMPARISON TO OTHER ALGORITHMS 

 Every algorithm has its own advantages 

and disadvantages and is best suited for specific 

types of problems. An optimization algorithm is 

considered efficient if it can reach the global 

minimum with fewer iterations [11]. Here are some 

comparisons of PSO with other algorithms. 

a. PSO vs Firefly Algorithm (FA) 
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 PSO and FA were tested to solve noisy 

nonlinear optimization problems, and the results 

showed that PSO performed better in terms of 

convergence speed. This phenomenon may be 

attributed to the influence of completely different 

random number generation used in the iterative 
process of the algorithm [12]. 

b. PSO vs Grey Wolf Optimization 

  The battery autonomy testing using PSO 

and GWO in photovoltaic systems for solar panels 

aimed to maximize output, even in shaded areas. 

The tests showed that both algorithms yielded 

similar results and did not differ significantly during 

trials. However, PSO outperformed GWO in the 
time taken to reach the maximum power point [13]. 

c. PSO vs Bee Colony Optimization vs Bat 

Algorithm 

 In the conducted tests, PSO demonstrated 

its ability to solve complex problems and produce 

optimal solutions, particularly in the optimization 

of membership functions in fuzzy controllers. 

Based on comparisons of various PSO variants, 

combination of PSO and interval type-2 fuzzy 

system (IT2FS) variant, which utilizes IT2FS for 

dynamic parameter adaptation, exhibited superior 

performance compared to all other PSO variants 

and showed better performance than both BA and 

BCO [14]. 

 

APPLICATIONS 

a. Non Linear Mathematical Model 

Mathematical model functions sometimes have 

disturbances (noise). Therefore, optimization is 

needed for every mathematical model to find 

optimal results. Mathematical models are tried for 

optimization like [12]: 

- Four peak function 

- Parabolic function 

- Camelback function 

- Rastrigin function 

The results of the tests indicated that, despite the 

presence of noise in the mathematical models, PSO 

was able to find optimal results for each 

mathematical model, with varying processing times 

and numbers of iterations depending on the specific 
problem. 

b. Trajectory of autonomus mobile robot 

The research aims to implement trajectory 

optimization for autonomous robots using PSO, 

BA, or BCO methods combined with modified 

fuzzy controllers (T1FS and IT2FS). The findings 

highlight that the integration of the PSO method 

with IT2FS is highly effective in addressing 

complex problems and achieving optimal solutions, 

particularly by enhancing the membership function 

optimization in fuzzy controllers, outperforming 

other methods. [14]. 

c. Main Engine 

The pollution generated by ships has reached a 

significant level, primarily from their main engines, 

which emit harmful gases that contribute to global 

warming and climate change. To address this issue, 

many modern ships have switched to dual-fuel 

engines to reduce their reliance on diesel fuel. In 

efforts to lower emissions, Combination of artificial 

neural network and PSO algorithm plays a crucial 

role in optimizing emission parameters and engine 
performance [15]. 

PSO can be implemented by optimizing various 

operational parameters, such as the fuel mixture 

ratio and engine speed, which affect the emissions 

produced by the engine. With PSO, the system can 

achieve optimal engine performance, where the 

power output remains maximized while minimizing 

exhaust emissions to meet strict environmental 
standards. 

 

CONCLUSION 

 PSO can be applied to optimized across 

various filed, including mathematical model 

optimization, trajectory planning for autonomus 

mobile robots, and emission control for main 

engines. Through various tests, PSO has 

demonstrated advantages over other algorithms 

such as FA and GWO, especially in terms of 

convergence speed and its ability to handle 

nonlinear problems with noise. Moreover, PSO is 

highly effective at solving complex problems and 

achieving optimal solutions, where its performance 

is superior compared to BA and BCO when applied 

on trajectory planning for autonomus mobile 

robots. Overall, PSO is an efficient and versatile 

algorithm with significant potential for adaptation 

in more complex optimization contexts. Future 

research can focus on developing more adaptive 

PSO variants and applying them to multi-objective 

optimization and optimize decision maker based on 
big data. 
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