

METEOR, Vol. 17, No. 2 December 2024 60

http://ejournal.stipjakarta.ac.id

METEOR STIP MARUNDA
pISSN : 1979 – 4746
eISSN : 2685 - 4775 Maritime Institute of Jakarta

Literature Review of Particle Swarm Optimization

1 Edi Kurniawan, 1 Diana Alia, 1 Henna Nurdiansari, 1 Sofyan Putra Wijaya

1 Maritime Polytechnic of Surabaya, Surabaya, Indonesia

email: edi.kurniawan@poltekpel-sby.ac.id

Submitted on : 09/10/2024 Revised : 05/11/2024 Accepted : 20/12/2024

ABSTRACT

Optimization methods are crucial methods in a process because optimization methods can solve complex

problems. One of the most effective optimization methods to achieve optimal solutions is Particle Swarm

Optimization (PSO), an algorithm inspired by the social behavior of animals. Where, the PSO algorithm is a

particle (parable an animal) that has been initialized will move continuously updating its position based on a

combination of two factors, namely the attraction towards the individual's best position (pBest) and the

attraction towards the global best position (gBest) until it reaches the position optimal. Particle movement is

influenced by three main control parameters, namely cognitive coefficient (c1), social coefficient (c2), and

inertial weight (ω) in order to produce optimal values without being trapped in local solutions. The advantages

of PSO compared to other optimal methods such as the Firefly Algorithm (FA) and Gray Wolf Optimizer

(GWO) are its convergence speed and ability to handle non-linear problems with noise. This makes PSO good

for applying to complex problems such as solving non-linear mathematical model problems, optimizing fuzzy

controllers, optimizing exhaust gas emission parameters and engine performance on ships.

Copyright ©2024, METEOR STIP MARUNDA, pISSN: 1979-4746, eISSN: 2685-4775

Keywords: optimization, pBest, gBest, PSO

INTRODUCTION

The need for humans to solve problems in the most

efficient and effective way has been a matter of

interest since ancient times. Beginning with

classical geometry in ancient Greece, concerning

the isoperimetric problem, which focuses on

finding the shape with the maximum area for a

given perimeter, this demonstrates that even in

ancient times, humans were already considering

ways to achieve optimal outcomes under limited

conditions. Optimization has continued to evolve,

from calculus optimization methods, linear and

nonlinear optimization, to metaheuristics that can

now solve highly complex problems where classical

approaches are no longer efficient.

 Optimization can be defined as a process of

selecting the most efficient and effective solution

from all possible options. To solve an optimization

problem, the following steps can be taken: First,

identifying the problem; second, formulating the

objective function and constraints; third, selecting

an optimization algorithm; and fourth, evaluating

solutions until an optimal solution is reached.

 Metaheuristics are robust and flexible

approaches for solving complex optimization

problems by leveraging principles derived from

mailto:edi.kurniawan@poltekpel-sby.ac.id

METEOR, Vol. 17, No. 2 December 2024 61

nature [1]. Metaheuristics explore a vast search

space and can identify optimal solutions for an
optimization problem.

 More than 40 years ago, the first

recognized metaheuristic, Simulated Annealing

(SA), was introduced. This algorithm was inspired

by the physical annealing process in metallurgy,

where material is heated and then slowly cooled to

minimize defects and achieve a more stable

structure. Since then, various other metaheuristic

methods have emerged, such as the Grey Wolf

Optimizer (GWO), an algorithm inspired by the

hunting behavior of grey wolf packs. GWO mimics

how wolves collaborate—alpha, beta, delta, and

omega wolves—to find, encircle, and chase prey.

The Whale Optimization Algorithm (WOA) is

based on the hunting behavior of humpback whales

using the bubble-net feeding technique. This

algorithm imitates the spiral movement patterns

humpback whales use to pursue prey underwater.

The Harris Hawk Optimization (HHO) is inspired

by the group hunting behavior of Harris's hawks,

which use siege tactics to capture prey. Elephant

Herding Optimization (EHO) draws from the social

behavior of elephant herds, where elephants live in

family groups led by older females, imitating the

herd's migration patterns and task allocation.

Particle Swarm Optimization (PSO) is based on the

social behavior of organisms that live in groups,

such as bird flocks or fish schools, which coordinate

when searching for food or grouping to avoid

predators. PSO can identify an optimal solution to a

problem with fewer evaluations than other
optimization methods [2].

PSO

a. Basic Concept

Particle Swarm Optimization (PSO) is a swarm-

based algorithm, known for its simple, nature-

inspired design, developed by Russell C. Eberhart,

an electrical engineer, and James Kennedy, based

on the flocking behavior of birds [3]. A single "bird"

represents a solution within the problem space,

where the term "bird" here refers to a "particle."

Compared to other methods, PSO can identify

optimal solutions with fewer evaluations and

generally operates more efficiently and effectively

[4]. PSO is also easy to implement for various

problems [5]. Due to its simple model, PSO has

attracted the attention of many researchers and has

consequently been widely published to demonstrate

its efficient performance across various application

fields [3], [6].

 The PSO computational method aims to

optimize a problem iteratively, beginning with a set

or population of candidate solutions known as a

swarm of particles. Each particle is aware of both

the global best position within the swarm and its

individual best position discovered thus far during
the search process in the problem space [7].

At each iteration, the velocity and position of each

particle in the swarm, represented by a d-

dimensional vector, are influenced by individual

experiences and acquired information. This guides

the iterative movement of particles through the

potential solution space to search for the optimal

solution until the desired criteria are met.

 The velocity of particles in the swarm is
updated at each iteration using as in (1) [8]:

𝑉⃗ 𝑡+1
𝑖 = 𝑉⃗ 𝑡

𝑖 + 𝜑1𝑅1𝑡
𝑖(𝑝 𝑡

𝑖 − 𝑥 𝑡
𝑖)

+ 𝜑2𝑅2𝑡
𝑖(𝑔 𝑡 − 𝑥 𝑡

𝑖) (1)

where φ1 and φ2 are real acceleration coefficients,

known respectively as cognitive and social weights,

which control the extent to which the global best

and individual best positions influence the velocity
and trajectory of the particles.

b. PSO Algorithm

 As shown below, is the pseudo code for

PSO, which initializes by randomly generating

values for the particles. Each particle will consider

its individual best value (pBest) and the global best

value (gBest) based on its position.

1. Start

2. Initialize PSO parameters:

a. Number of particles (n)

b. Randomly initialize the position of each

particle in the search space

c. Randomly initialize the velocity of each

particle

d. Initialize the best individual position of

each particle (pBest)

e. Initialize the global best position among

all particles (gBest)

f. Set the maximum number of iterations

3. Repeat until the maximum iteration is reached

or the stopping criterion is met:

a. For each particle:

1) Calculate the fitness value of the

particle at its current position

2) If the fitness value at the current

position is better than the pBest value,

update pBestp with the current position

value

3) If the fitness value at the current

position is better than the gBest value,

update gBest with the current position

value

b. For each particle:

1) Update the particle velocity based on

the formula:

METEOR, Vol. 17, No. 2 December 2024 62

𝑣[𝑖] = 𝑣[𝑖] + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡[𝑖]
− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [𝑖]
+ 𝑐2 ∗ 𝑟2
∗ (𝑔𝐵𝑒𝑠𝑡
− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖])

 Where, 𝑣[𝑖] is the velocity of particle 𝑖 at

the previous iteration, 𝑐1 and 𝑐2 are

acceleration constants, 𝑟1 and 𝑟2 are

random numbers between 0 and 1,

pBest[𝑖] is the best position of particle 𝑖,
gBest is the global best position, position
[𝑖] is position number 𝑖.

2) Update the position of the particle

based on the formula:

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖] = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑖] +

𝑣[𝑖]
c. Check if the stopping criteria have been met

 Finish: gBest is the best solution found.

To provide further clarity, here is a simple Cartesian
diagram illustrating how PSO works.

 Each initialized particle will continuously

update its position based on a combination of two

factors: attraction toward its individual best position

(pBest) and attraction toward the global best

position (gBest). The vectors shown in the diagram

illustrate the direction of the particle's movement

toward both pBest and gBest. Particles will

continue to move until they reach an optimal

position or until their movements become minimal,

indicating convergence.

c. Control Parameter

 There are three main control parameters for

PSO: the cognitive coefficient (c1), the social

coefficient (c2), and the inertia weight (ω) [9], [10].

PSO is highly sensitive to these three control

parameters, which significantly affect the

algorithm's performance in finding solutions [2].

1) Cognitive Coeficient (c1)

The parameter c1 determines the extent to which

the individual best position (pBest) influences the

movement of the particles. This parameter reflects

the tendency of particles to follow their own

successful paths. Setting a value of c1 that is too

high can cause particles to focus excessively on

achieving pBest, thereby reducing their exploration

capability within the solution space. Conversely, if

c1 is set too low, particles may not be sufficiently

guided by their own experiences and may become

overly reliant on the global best position (gBest),

which can limit the discovery of new solutions.

Therefore, the value of c1 is typically set in the

range of 1.5 to 2.0, providing an optimal balance

between exploration and exploitation. Adjusting the

value of c1 through experimentation can help
identify the optimal value for specific problems.

2) Social Coeficient (c2)

 The parameter c2 functions to control the

extent to which the global best position (gBest)

influences the movement of particles, reflecting

their tendency to follow the collective success of the

swarm. A high value of c2 will encourage particles

to focus more on moving toward gBest, which can

accelerate convergence to the optimal solution.

However, if the value of c2 is set too high, it may

lead to a loss of diversity among the particles and

cause them to become trapped in local solutions.

Conversely, if c2 is set too low, particles may be

insufficiently influenced by the swarm's

achievements and may not move quickly enough

toward gBest, thereby slowing down the search

process. Therefore, c2 is typically set in the range of

1.5 to 2.0.

3) Inertia Weight (ω)

 The inertia weight ω regulates the influence

of a particle's previous velocity on its current

velocity, functioning to balance exploration and

exploitation. A high value of ω allows particles to

maintain their previous speed, which can enhance

exploration and broaden the coverage of the search

space. Conversely, a low value of ω makes particles

more responsive to pBest and gBest, accelerating

the exploitation process. Typically, the value of ω
is set in the range of 0.4 to 0.9.

COMPARISON TO OTHER ALGORITHMS

 Every algorithm has its own advantages

and disadvantages and is best suited for specific

types of problems. An optimization algorithm is

considered efficient if it can reach the global

minimum with fewer iterations [11]. Here are some

comparisons of PSO with other algorithms.

a. PSO vs Firefly Algorithm (FA)

METEOR, Vol. 17, No. 2 December 2024 63

 PSO and FA were tested to solve noisy

nonlinear optimization problems, and the results

showed that PSO performed better in terms of

convergence speed. This phenomenon may be

attributed to the influence of completely different

random number generation used in the iterative
process of the algorithm [12].

b. PSO vs Grey Wolf Optimization

 The battery autonomy testing using PSO

and GWO in photovoltaic systems for solar panels

aimed to maximize output, even in shaded areas.

The tests showed that both algorithms yielded

similar results and did not differ significantly during

trials. However, PSO outperformed GWO in the
time taken to reach the maximum power point [13].

c. PSO vs Bee Colony Optimization vs Bat

Algorithm

 In the conducted tests, PSO demonstrated

its ability to solve complex problems and produce

optimal solutions, particularly in the optimization

of membership functions in fuzzy controllers.

Based on comparisons of various PSO variants,

combination of PSO and interval type-2 fuzzy

system (IT2FS) variant, which utilizes IT2FS for

dynamic parameter adaptation, exhibited superior

performance compared to all other PSO variants

and showed better performance than both BA and

BCO [14].

APPLICATIONS

a. Non Linear Mathematical Model

Mathematical model functions sometimes have

disturbances (noise). Therefore, optimization is

needed for every mathematical model to find

optimal results. Mathematical models are tried for

optimization like [12]:

- Four peak function

- Parabolic function

- Camelback function

- Rastrigin function

The results of the tests indicated that, despite the

presence of noise in the mathematical models, PSO

was able to find optimal results for each

mathematical model, with varying processing times

and numbers of iterations depending on the specific
problem.

b. Trajectory of autonomus mobile robot

The research aims to implement trajectory

optimization for autonomous robots using PSO,

BA, or BCO methods combined with modified

fuzzy controllers (T1FS and IT2FS). The findings

highlight that the integration of the PSO method

with IT2FS is highly effective in addressing

complex problems and achieving optimal solutions,

particularly by enhancing the membership function

optimization in fuzzy controllers, outperforming

other methods. [14].

c. Main Engine

The pollution generated by ships has reached a

significant level, primarily from their main engines,

which emit harmful gases that contribute to global

warming and climate change. To address this issue,

many modern ships have switched to dual-fuel

engines to reduce their reliance on diesel fuel. In

efforts to lower emissions, Combination of artificial

neural network and PSO algorithm plays a crucial

role in optimizing emission parameters and engine
performance [15].

PSO can be implemented by optimizing various

operational parameters, such as the fuel mixture

ratio and engine speed, which affect the emissions

produced by the engine. With PSO, the system can

achieve optimal engine performance, where the

power output remains maximized while minimizing

exhaust emissions to meet strict environmental
standards.

CONCLUSION

 PSO can be applied to optimized across

various filed, including mathematical model

optimization, trajectory planning for autonomus

mobile robots, and emission control for main

engines. Through various tests, PSO has

demonstrated advantages over other algorithms

such as FA and GWO, especially in terms of

convergence speed and its ability to handle

nonlinear problems with noise. Moreover, PSO is

highly effective at solving complex problems and

achieving optimal solutions, where its performance

is superior compared to BA and BCO when applied

on trajectory planning for autonomus mobile

robots. Overall, PSO is an efficient and versatile

algorithm with significant potential for adaptation

in more complex optimization contexts. Future

research can focus on developing more adaptive

PSO variants and applying them to multi-objective

optimization and optimize decision maker based on
big data.

REFERENCES

 [1] J. Del Ser et al., “Bio-inspired

computation: Where we stand and what’s next,”

Swarm Evol. Comput., vol. 48, no. April, pp. 220–

250, 2019, doi: 10.1016/j.swevo.2019.04.008.

[2] M. Isiet and M. Gadala, “Sensitivity

analysis of control parameters in particle swarm

optimization,” J. Comput. Sci., vol. 41, p. 101086,

2020, doi: 10.1016/j.jocs.2020.101086.

[3] J. Kennedy and R. Eberhart, “Particle

Swarm Optimization,” Nat. Comput. Ser., pp. 105–

111, 1995, doi: 10.1007/978-3-031-17922-8_4.

METEOR, Vol. 17, No. 2 December 2024 64

[4] M. Isiet and M. Gadala, “Self-adapting

control parameters in particle swarm

optimization,” Appl. Soft Comput. J., vol. 83, p.

105653, 2019, doi: 10.1016/j.asoc.2019.105653.

[5] B. Ji, X. Lu, G. Sun, W. Zhang, J. Li, and

Y. Xiao, “Bio-Inspired Feature Selection: An

Improved Binary Particle Swarm Optimization

Approach,” IEEE Access, vol. 8, pp. 85989–86002,

2020, doi: 10.1109/ACCESS.2020.2992752.

[6] R. Eberhart and J. Kennedy, “New

optimizer using particle swarm theory,” Proc. Int.

Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995,

doi: 10.1109/mhs.1995.494215.

[7] D. Freitas, L. G. Lopes, and F. Morgado-

Dias, “Particle Swarm Optimisation: A historical

review up to the current developments,” Entropy,

vol. 22, no. 3, pp. 1–36, 2020, doi:

10.3390/E22030362.

[8] M. R. Bonyadi and Z. Michalewicz,

“Particle swarm optimization for single objective

continuous space problems: A review,” Evol.

Comput., vol. 25, no. 1, pp. 1–54, 2017, doi:

10.1162/EVCO_r_00180.

[9] J. Wu, C. Song, C. Fan, A. Hawbani, L.

Zhao, and X. Sun, “DENPSO: A Distance

Evolution Nonlinear PSO Algorithm for Energy-

Efficient Path Planning in 3D UASNs,” IEEE

Access, vol. 7, pp. 105514–105530, 2019, doi:

10.1109/ACCESS.2019.2932148.

[10] K. R. Harrison, B. M. Ombuki-Berman,

and A. P. Engelbrecht, An analysis of control

parameter importance in the particle swarm

optimization algorithm, vol. 11655 LNCS.

Springer International Publishing, 2019. doi:

10.1007/978-3-030-26369-0_9.

[11] A. Gupta and S. Srivastava, “Comparative

Analysis of Ant Colony and Particle Swarm

Optimization Algorithms for Distance

Optimization,” Procedia Comput. Sci., vol. 173,

no. 2019, pp. 245–253, 2020, doi:

10.1016/j.procs.2020.06.029.

[12] S. K. Pal, C. . Rai, and A. P. Singh,

“Comparative Study of Firefly Algorithm and

Particle Swarm Optimization for Noisy Non-

Linear Optimization Problems,” Int. J. Intell. Syst.

Appl., vol. 4, no. 10, pp. 50–57, 2012, doi:

10.5815/ijisa.2012.10.06.

[13] H. Kraiem, F. Aymen, L. Yahya, A.

Triviño, M. Alharthi, and S. S. M. Ghoneim, “A

comparison between particle swarm and grey wolf

optimization algorithms for improving the battery

autonomy in a photovoltaic system,” Appl. Sci.,

vol. 11, no. 16, 2021, doi: 10.3390/app11167732.

[14] F. Olivas, L. Amador-Angulo, J. Perez, C.

Caraveo, F. Valdez, and O. Castillo, “Comparative

study of type-2 fuzzy Particle swarm, Bee Colony

and Bat Algorithms in optimization of fuzzy

controllers,” Algorithms, vol. 10, no. 3, 2017, doi:

10.3390/a10030101.

[15] C. Ma, C. Yao, E. Z. Song, and S. L. Ding,

“Prediction and optimization of dual-fuel marine

engine emissions and performance using combined

ANN with PSO algorithms,” Int. J. Engine Res.,

vol. 23, no. 4, pp. 560–576, 2022, doi:

10.1177/1468087421990476.

