ISSN : 1979 - 4746 EISSN : 2685 - 4775 ISSN : 2685 - 4775

The Analysis of Internal Combustion Engine Concept: The Five-Stroke Cycle as an Innovative Advancement in the Automotive Sector

¹Hartaya, ²Bambang Wahyudi, ³Catur Ratmoko

Sekolah Tinggi Ilmu Pelayaran Jakarta Jl. Marunda Makmur No. 1 Cilincing, Jakarta Utara. Jakarta 14150

email: hartayastip@gmail.com

disubmit pada : xx/11/24

direvisi pada : xx/11/24

diterima pada : xx/11/24

Abstract

In this paper, a new design for the Internal Combustion Engine (ICE) is presented, featuring characteristics that are superior to its predecessors and have the potential to advance technology in the field. Technically, the concept involves adding an additional step to the classical four-stroke cycle in order to extract more work. The design incorporates an ICE with three cylinders: two high-pressure cylinders and a third low-pressure cylinder. The high-temperature exhaust gases from the four-stroke engine contain energy that can be further utilized to extract additional work, improving overall efficiency and reducing emission temperatures. Through this extraction concept, the additional work produced by the new design aims at enhancing efficiency and reducing structural weight. It was found that adding an extra step to the four-stroke ICE can lead to an increased expansion ratio and thermal efficiency. This is made possible by the extended expansion performed by the low-pressure cylinder, which has a larger volume compared to the two high-pressure cylinders. The extended stroke helps generating greater torque and output power while consuming less fuel mixture, thus improving the overall efficiency.

Copyright ©2024, METEOR STIP MARUNDA, pISSN: 1979-4746, eISSN: 2685-4775

Keywords : ICE, Five-Stroke Engine Efficiency, Thermodynamics, Lower Emissions, Higher Output Power, and Lighter Structure

INTRODUCTION

Energy is a primary necessity in a production facility, where the energy expenditure occupies one of the top three positions in the monthly budget. Therefore, it is crucial to closely monitor its fluctuations due to the significant impact on the efficiency of the production facility. The price changes of energy raw materials in Indonesia have a highly sensitive reaction among industry players, considering that the energy expenditure component in the production process is substantial. As discussed above and as a point of focus, the procurement of fuel oil is a significant cost component in the operation of passenger or freight transportation services. Additionally, fuel oil is a valuable commodity, making it a highly sensitive issue with multiple stakeholders involved. Fuel oil, derived from fossil energy sources, is a nonrenewable energy resource. Eventually, this energy source will be depleted, necessitating its use to be as efficient as possible.

The significant cost of fuel in the transportation of goods and people, combined with the large quantities of fuel burned, also contributes to considerable environmental damage. In this paper, we will review a new concept in the Internal Combustion Engine (ICE) that offers better features compared to its predecessors and represents an advancement in engine technology— the Five-Stroke Internal Combustion Engine. Due to the broad scope of the topic and time limitations, the research team has decided to focus the discussion on the Five-Stroke Cycle Internal Combustion Engine as applied to Otto Cycle Engines (spark-ignition engines) in relation to the following issues:

- 1. The Design, Structure, and Operating Principle of the Five-Stroke Internal Combustion Engine Concept.
- 2. Comparison of Characteristics, Advantages, and Disadvantages of the Five-Stroke Internal Combustion Engine Concept.

The objectives of this study are as follows:

- a) To understand and analyze the design, structure, and operating principles of the Five-Stroke Cycle Internal Combustion Engine concept.
- b) To compare the characteristics, advantages, and disadvantages of the Five-Stroke Internal Combustion Engine concept in relation to conventional internal combustion engines with previously established cycles.

METHOD

The research method used by the research team in this study is the qualitative descriptive method. The study was conducted at the Higher School of Shipping, Jakarta. Data collection techniques included indirect interviews (via email), literature review, and documentation. The data analysis technique employed was qualitative descriptive analysis.

RESULTS AND DISCUSSION Results

Design, Structure, and Operating Principles of the Five-Stroke Cycle Internal Combustion Engine Concept The engine consists of three cylinders mounted on a single crankshaft that rotates with a specified configuration, where precise timing is required to move the cylinders during the different strokes at the appropriate moments.

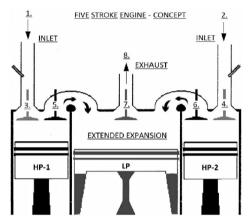


Figure 1. Cylinder Configuration in the Five-Stroke Engine Block

As shown in Figures 1 and 2, the engine block features a three-cylinder configuration, consisting of two high-pressure cylinders that perform the main work and have a smaller volume compared to the low-pressure cylinder, which has almost twice the volume of the high-pressure cylinders. The lowpressure cylinder is positioned between the two high-pressure cylinders, working in coordination with them and aiding in providing additional energy through the extended expansion stroke, thereby improving the overall efficiency of the engine.

Figure 2. External View of the Five-Stroke Engine Block

Figure 2 shows the external view of the Five-Stroke Engine block, which is made from an alloy produced through a casting process. It features space for three cylinders mounted within its compartment. Two cylinders with smaller diameters are positioned at both ends, while a larger diameter cylinder is placed in the center. Figure 3 illustrates various essential components of the Five-Stroke Engine assembly, including the cylinders (HP-1, HP-2, and LP), piston rods, valves, camshaft, crankshaft, and others, along with the configuration of the crank cheeks at each degree. It is clearly shown that the rotation of the crankshaft in the required direction ultimately facilitates the proper movement of the valves and ensures the correct operation of the cylinders.

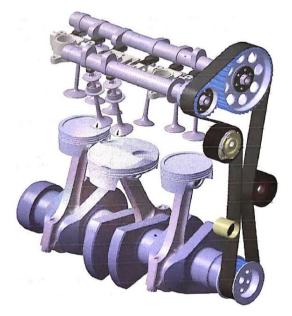


Figure 3. Internal View of the Main Components of the Five-Stroke Engine

From the design and structure of the Five-Stroke Internal Combustion Engine concept outlined previously, it naturally leads to a change in the power calculation generated by this engine concept. The mathematical formula for calculating the power output of the Five-Stroke Internal Combustion Engine concept consists of the following:

a) Formula for Calculating High-Pressure Cylinder (HP-Cylinder) Power

> The power calculation for the highpressure cylinder is essentially the same as the formula used for calculating the power of a four-stroke engine, which is:

 $P_{i(HP_{cyl})} = \pi/4.D_{(HP)^2}.S.n/a.Z_{(HP)}P_{i(HP)}.100(KW)$

 b) Formula for Calculating Low-Pressure Cylinder (LP-Cylinder) Power
The power calculation for the lowpressure cylinder is essentially the same as the formula used for calculating the power of a two-stroke engine, which is:

 $P_{i(LP_{cyl})} = \pi /_{4} . D_{(LP)^{2}} . S . n /_{a} . Z_{(LP)} P_{i(LP)} . 100(KW)$

c) Formula for Calculating the Total Power of the New Five-Stroke Internal Combustion Engine Concept

> The formula for calculating the total power of the Five-Stroke Internal Combustion Engine concept is as follows:

 $P_{i(total)} = P_{i(HP_{cyl})} + P_{i(LP_{cyl})}$

Description:

- $P_{i(total)}$ = Total indicator power of the five-stroke engine cycle (KW)
- $P_{i(HPcyl)}$ = Indicator power of the highpressure cylinder (KW)
- $P_{i(LPcyl)}$ = Indicator power of the lowpressure cylinder (KW)
- D_(HP) = Diameter of the high-pressure cylinder (meters)
- D_(LP) = Diameter of the low-pressure cylinder (meters)
- S = Piston stroke (meters)
- n = Crankshaft speed (RPS = revolutions per second)
- a = Crankshaft rotation to work stroke ratio
- a = 1 (for 2-stroke) dan a = 2 (for 4stroke)
- Z_{HP} = Number of high-pressure cylinders
- Z_{LP} = Number of low-pressure cylinders
- $P_{i(HP)}$ = Average indicator pressure of the high-pressure cylinder (bar)
- $P_{i(LP)}$ = Average indicator pressure of the low-pressure cylinder (bar)
- d) Operating Principle of the Five-Stroke Cycle Internal Combustion Engine Concept

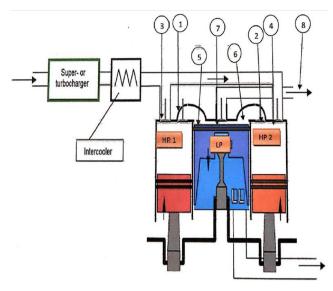


Figure 4. Sketch of the Five-Stroke Engine Concept

Description:

HP-1 : High-Pressure Cylinder (1)

HP-2 : High-Pressure Cylinder (2)

LP : Low-Pressure Cylinder

1&2 : Exhaust Valve for High-Pressure Cylinder

3 & 4 : Intake Port for Low-Pressure Cylinder

5 & 6 : Intake Valve for High-Pressure Cylinder

7 : Exhaust Valve for Low-Pressure Cylinder

8 : Exhaust Gas Port

Table 1. Working Process of Each Cylinder in the Five-Stroke Engine

Step Sequence	High- Pressure Cylinder (HP-1) Working Process	Low- Pressure Cylinder (LP-Cyl) Working Process	High- Pressure Cylinder (HP-2) Working Process	Step Sequence
Ke-1	Charging	Exhaust to atmosphere	Expansion	
Ke-2	Compression	Extended Expansion	Extended Expansion (to LP-cyl)	
Ke-3	Expansion	Exhaust to atmosphere	Charging	Ke-1
Ke-4	Extended Expansion (to LP-cyl)	4. Extended Expansion	Compression	Ke-2
Ke-5	Charging	5. Exhaust to atmosphere	Expansion	Ke-3
		4. Extended Expansion	Extended Expansion (to LP-cyl)	Ke-4
		5. Exhaust to atmosphere	Charging	Ke-5

Comparison of the Characteristics, Advantages, and Disadvantages of the Five-Stroke Internal Combustion Engine Concept

Thermodynamic Cycle of the Five-Stroke Otto Engine.

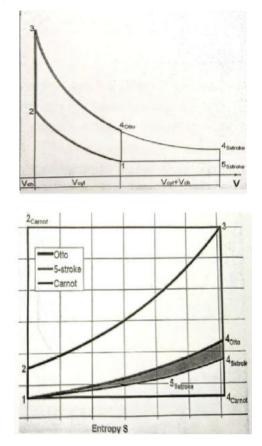


Figure 5. (p-v) and (t-s) Diagrams of the Five-Stroke Otto Engine Cycle

Description:

5 - 1	: Intake process	(isobaric)
-------	------------------	------------

- 1-2 : Compression process (adiabatic)
- 2-3 : Combustion process (isochoric)
- 3-4 : Expansion process (adiabatic)
- $4-4^*$: Extended expansion process (adiabatic)
- $4^* 5$: Exhaust process (isochoric)

Below is Table 2, comparing the characteristics of the Otto (Gasoline) Engine at various operating cycles.

Table 2. Comparison of Characteristics of Each
Cycle Type (in Otto Cycle Engines)

N	Step	Siklus Kerja Mesin		
0	(Proces s)	2-Stroke	4-Stroke	5-Stroke
1	Intake /	New air	New air	New air
	Scaven	intake into the	intake into the	intake into the
	ging	cylinder	cylinder is	cylinder is
		requires	more optimal	more optimal

			(:	(:+:
		auxiliary	(positive	(positive
		equipment:	pressure occurs)	pressure occurs)
		blower,	occurs)	occurs)
		scavenging		
		pump,		
2	Comm	turbocharger	With a high	True stage
2	Compr ession	With a high compression/	With a high compression/	Two-stage compression/
	ession	expansion	expansion	expansion
		-	-	occurs in both
		ratio, the risk	ratio, the risk	
		of 'knocking'	of 'knocking'	HP and LP
		is higher, so it	is higher, so it	cylinders,
		is equipped	is equipped	reducing the
		with anti-	with anti-	risk of
		knocking	knocking	knocking
		control	control	
_	-	protection	protection	
3	Expans	Only one	Only one	Two-stage
	ion /	power stroke	power stroke	compression/
	Power	occurs per	occurs per	expansion
	Stroke	full rotation	two full	occurs in both
			rotations	HP and LP
				cylinders,
				resulting in
				greater power
				output due to
				the additional
				power
				generated in
				the LP
				cylinder
4	Exhaus	The exhaust	The heat	The heat
	t	process is not	content of the	content of the
		fully efficient.	exhaust gases	exhaust gases
		The heat	leaving the	leaving the
		content of the	cylinder is	cylinder is
		exhaust gases	still high	lower
		leaving the		
		cylinder is		
		still high		
		a. The power	a. The power	a. The power
		output is	output is lower	generated is
		greater		higher
		b. Fuel	b. Fuel	b. Fuel
		consumption	consumption	consumption
Summary		is higher	is lower	is lower
		c. Exhaust	c. Exhaust	c. Exhaust
		emissions are	emissions are	emissions are
		higher	higher	lower
		d. Less	d. Less	d. More
		environmenta	environmenta	environmenta
		environmenta lly friendly	environmenta lly friendly	environmenta lly friendly

Sources: Gerhard Schmitz, 5-Stroke Engine Concept

- 1. Advantages
 - a) Additional Power Output: The system gains additional power output due to the extended expansion process in the Low Pressure (LP) cylinder, utilizing exhaust gases from the High Pressure (HP) cylinder expansion.
 - b) Reduced Components and Fuel Consumption: To generate the same

METEOR, Vol. xx No. x, Desember 2024

power as a conventional combustion engine, the five-stroke engine requires fewer components and less fuel consumption.

- c) Improved Thermal Efficiency: The engine increases thermal efficiency by minimizing heat losses, particularly the heat carried away by the exhaust gases discharged from the chimney.
- d) Environmental Friendliness: The system is more environmentally friendly as it indirectly reduces exhaust emissions released into the atmosphere.
- 2. Disadvantages
 - a) Under Research and Development: The five-stroke engine is still in the research and development phase by various manufacturers, with most of them keeping their research results confidential.
 - b) Prototypes Based on Otto Cycle: Current prototypes of the five-stroke engine are still based on the gasoline engine (Otto cycle) and have not yet been tested with diesel engine prototypes.

CONCLUSION

The new concept of the Five-Stroke Internal Combustion Engine represents a groundbreaking development by mechanical experts, building upon the previous advancements in the Four-Stroke and Two-Stroke engine cycles. The new concept offers numerous advantages compared to its drawbacks. This innovative design of the Five-Stroke Internal Combustion Engine is expected to become one of the leading engine technologies in the future, offering higher power output, improved fuel efficiency, and greater environmental friendliness.

REFERENCES

- R. van Basshuysen and F. Schaefer, Internal Combustion Engine Handbook: Basics, Components, Systems and Perspectives, SAE International, Warrendale, 2004.
- [2] G. Schmitz, *Five Stroke Internal Combustion Engine: A New Concept for Internal Combustion Engines*, St. Vith, Belgium, 2011.

- [3] A. Kéromnès, G. Delaporte, G. Schmitz, and L. Le Moyne, "Development and validation of a 5-stroke engine for range extenders application," *Energy Conversion and Management*, vol. 82, pp. 259–267, 2014.
- G. L. Newman, *Five Stroke Internal Combustion Engine*, U.S. Patent 6776144B1, Aug. 17, 2004.
- [5] M. Noga and B. Sendyka, "New design of the five-stroke engine," *International Journal of Automotive Technology*, Poland, 2014.
- [6] M. Palanivendhan, H. Modi, and G. Bansal, "Five stroke internal combustion engine," *International Journal of Control Theory and Applications*, vol. 9, no. 22, pp. 1271–1281, 2016.
- [7] M. Randal, Audi A4 Owners Workshop Manual: Jan 2005 to Feb 2008, Haynes Publishing, Sparkford, ISBN 978-1-844258857, 2010.